Spot the difference

What are the differences and similarities between the elements below?

- 12
 - C
 - 6

- 13
 - C
 - 6

- 14
 - C
 - 6

Task

1. Use this to describe the differences and similarities between isotopes of the same element in terms of their sub-atomic particles. (3 marks)

Think about what the information above represents.

2. How is the relative atomic mass of an element in the periodic table calculated? (1 mark)

3. For each element, use the percentage abundance and mass number of its isotopes to calculate the relative atomic mass \(A_r\). Remember to show your working and give your answers to 2 decimal places.

 a. Isotope \(^{35}\text{Cl}\) has an abundance of 75.77%
 Isotope \(^{37}\text{Cl}\) has an abundance of 24.23%

 \[A_r \text{ of chlorine} = \]
b. Isotope 79Br has an abundance of 50.69%
 Isotope 81Br has an abundance of 49.31%

 A_r of bromine = ...

C. Isotope 20Ne has an abundance of 90.60%
 Isotope 21Ne has an abundance of 0.20%
 Isotope 22Ne has an abundance of 9.20%

 A_r of neon = ...

D. Isotope 24Mg has an abundance of 78.90%
 Isotope 25Mg has an abundance of 10.00%
 Isotope 26Mg has an abundance of 11.10%

 A_r of magnesium = ...

E. Isotope 32S has an abundance of 95.02%
 Isotope 33S has an abundance of 0.75%
 Isotope 34S has an abundance of 4.21%
 Isotope 36S has an abundance of 0.02%

 A_r of sulfur = ...

Challenge

The relative atomic mass of a sample of boron is 10.80. There are 2 isotopes of boron, 10B and 11B. What would be the % abundance of each isotope?
Isotopes and relative abundance

Answers

Spot the difference

- Same symbol, so all carbon atoms
- Same atomic number
- Different mass numbers

1. All have the same number of protons (1) and electrons (1), but different numbers of neutrons (1)

2.

\[A_r = \frac{(mass\ 1 \times abundance\ 1) + (mass\ 2 \times abundance\ 2) + \ldots}{100} \]

3.

a. \(((35 \times 75.77) + (37 \times 24.23)) \div 100 = 35.48\)

b. \(((79 \times 50.69) + (81 \times 49.31)) \div 100 = 79.99\)

c. \(((20 \times 90.60) + (21 \times 0.20) + (22 \times 9.20)) \div 100 = 20.19\)

d. \(((24 \times 78.90) + (25 \times 10.00) + (26 \times 11.10)) \div 100 = 24.32\)

e. \(((32 \times 95.02) + (33 \times 0.75) + (34 \times 4.21) + (36 \times 0.02)) \div 100 = 32.09\)

Challenge:

\(^{10}\text{B}\) abundance = 20%

\(^{11}\text{B}\) abundance = 80%

The following video is useful to use as an explanation of how to calculate atomic mass; www.youtube.com/watch?v=SdhLTfma_Eg